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A boundary-domain integral equation method in
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SUMMARY

In this paper, the reciprocal work theorem for viscous �uid �ow is established for Newtonian �uids
and, based on this theorem, a set of boundary-domain integral equations is derived from the continuity
and momentum equations for two-dimensional viscous �ows. The complex-variable technique is used
to compute velocity gradients in the use of the continuity equation. The primary variables involved in
these integral equations are velocity, traction and pressure. Although the numerical implementation is
only focused on steady incompressible �ows, these equations are applicable to solving steady, unsteady,
compressible and incompressible problems. In this method, the pressure can be expressed in terms
of velocity and traction such that the �nal system of equations entering the iteration procedure only
involves velocity and traction as unknowns. Two commonly cited numerical examples are presented to
validate the derived equations. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: viscous �ow; continuity equation; Navier–Stokes equations; boundary integral method
(BEM); domain integral

1. INTRODUCTION

The central governing equations in viscous �ow are the Navier–Stokes (NS) equations (the
momentum equations). Owing to the non-linearity of the convective terms appearing in the
NS equations, only a few simple problems have analytical solutions [1]. For problems with
complicated geometry or boundary conditions, numerical methods must be employed. The
�nite di�erence (FDM) [2], �nite volume (FVM) [3] and �nite element methods (FEM) [4]
are well-established numerical methods for solving viscous �ow problems. Among the three
methods, FDM was �rst developed and is very simple to use although it requires very regular
mesh [5]. In FEM, the penalty formulation is extensively used [6], but the determination
of the penalty parameter is still controversial. The common feature of the three methods
is that they are based on domain variable representations and local interpolation schemes,
resulting in systems of equations that are highly spared matrices. Therefore, it is possible
to use many nodes to discretize the domain of a problem. However, since the information
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is locally communicated by adjacent nodes, the computational accuracy is not as high as
using the integral equation methods based on fundamental solutions. Moreover, since these
methods rely on �eld information, it is impossible to develop a meshless algorithm to solve
viscous �ow problems. On the other hand, more and more references show that the boundary
element method (BEM) is a promising technique for achieving this purpose by using the dual
reciprocity method [7] or, more e�ectively, the radial integration method [8].
BEM is the most elegant numerical method for dealing with linear problems such as poten-

tial �ows, linear elasticity and viscous creeping �ows (Stokes equations). The most attractive
feature of BEM is that the resulting system of equations only involve boundary quantities
and their derivatives as unknowns. Therefore, only the boundary of the problem needs to be
discretized into elements. Unfortunately, this distinct advantage is lost in solving non-linear
problems such as the Navier–Stokes equations. For non-linear problems, domain integrals in-
evitably appear in the boundary integral equations. As a result, the non-linear region of the
domain needs to be discretized into internal cells in order to evaluate the domain integral.
Nevertheless, if the non-linear region is not large, BEM is still an e�cient numerical tool.
Apart from this, BEM is very robust in solving aerodynamics problems since the boundary
conditions at in�nity are automatically satis�ed.
The �rst integral equation analysis for NS equations in terms of vorticity and velocity

was carried out by Wu et al. in 1973 [9] through partitioning the mass and momentum
conservation equations into kinematic and kinetic parts. The vorticity is determined by the
non-linear transport equations, whereas the velocity is solved by an integral equation based
on the fundamental solutions of the Laplace equation. Similar good works were conducted by
Skerget et al. [10] and Onishi et al. [11] using the vorticity-stream function integral approach.
The drawback of this type of technique is that the boundary conditions are not easy to set up
in terms of vorticity and that the extension to three dimensions is not attractive.
In order to use the successfully established BEM theory in linear elasticity, Kitagawa et al.

[12] and Grigoriev and Fafurin [13] utilized the penalty function method to solve incompress-
ible �ow problems based on the fundamental solutions of the Navier equation in elasticity
by employing adequately large penalty parameters. Although nice results were obtained with
this technique, using arbitrary penalty parameters results in an arti�cial compressibility of the
�ow.
A very elegant boundary integral equation can be obtained for incompressible �ow by using

the Stokeslet fundamental solutions [14]. The beauty of this technique is that the pressure is
not included in the integral equations due to the use of the Stokeslet fundamental solutions
which automatically satisfy the continuity equation. The �rst boundary element treatment us-
ing the Stokeslet fundamental solutions is attributed to the work by Bush and Tanner in 1983
[15] in which the local cell interpolation scheme is used to evaluate the velocity gradients.
A similar idea appears in the recent work by Aydin and Fenner [16] with the di�erence being
that the convective terms are treated using di�erent �nite di�erence schemes in di�erent �ow
regions. To avoid the calculation of velocity gradients, Tosaka and Onishi [17] integrated
the domain integrals by parts to remove the velocity gradients. This idea was further used
by Tosaka and Fukushima [18] and Dargush and Banerjee [19]. The di�erence between the
Dargush and Banerjee’s work and others is that a di�erent set of fundamental solutions is
used and derived integral equations can account for thermal force e�ect in viscous �ows. In
order to evade the discretization of the domain into cells, Power and Partridge [20] trans-
formed the domain integrals of the convective terms into boundary integrals by employing
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BOUNDARY-DOMAIN INTEGRAL METHOD FOR VISCOUS FLOW 465

the dual reciprocity method initiated by Nardini and Brebbia [7]. Further improvement to
this technique refers to the works by Sarler and Kuhn [21], Power and Mingo [22] and
Florez et al. [23].
Although the use of the Stokeslet fundamental solutions can result in velocity-traction only

integral equations, the resulting BEM formulation is valid only for incompressible �uid �ow.
For compressible �ow, such as in aerodynamics [5, 24], a new powerful integral formulation
needs to be developed for general viscous �ows. This paper is an attempt of the �rst step for
this purpose.
In this paper, a reciprocal work theorem is �rst established from the constitutive relationship

between stresses and strain rates. Then, based on this theorem, a set of velocity-traction-
pressure integral equations is derived from the continuity equation and the momentum
equations. The derived integral equations are valid for steady, unsteady, compressible and
incompressible �ows, although numerical implementation is only devoted to steady incom-
pressible �ows. The attractive feature of this method is that the pressure can be elimi-
nated from the �nal system of equations. Consequently, the �nal iterative system is only
related to the boundary unknowns (velocities or tractions) and internal velocities. In order
to avoid evaluating strongly singular domain integrals, the complex-variable technique intro-
duced to BEM by Gao et al. [25] is adopted to accurately evaluate the velocity gradients
which are needed in the continuity equation. Finally, two commonly used examples, Cou-
ette �ow and driven cavity �ow, will be used to validate the formulation derived in this
paper.

2. GOVERNING EQUATIONS OF VISCOUS FLOW

The governing equations in �uid mechanics can be derived from the conservation laws of
mass, momentum and energy [26]. In this paper, the �ow is assumed to be under isothermal
condition, so conservation of energy is not concerned. The primitive equations are given in
an inertial system and using Cartesian co-ordinates. The conservation of mass results in the
following continuity equation:

@�
@t
+
@�ui
@xi

=0 or
@�
@t
+ (�ui); i=0 (1)

where t is time, � the �uid density and ui the ith velocity component. The repeated subscript
stands for summation and (); i= @()=@xi. For incompressible �ow, the above equation reduces
to ui; i=0.
The conservation of momentum (Newton’s second law) can be expressed as

�ij; j + �bi = �
@ui
@t
+ �ujui; j (2)

where bi is the body force per unit mass (e.g. the gravity force) and �ij the stress tensor.
For Newtonian �uid, the constitutive relationship between the stresses and strain rates can be
expressed based on Stokes’ hypothesis as

�ij= −p�ij + 2�(�ij − �ij�kk =3) (3)
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in which p is the pressure, �ij the Kronecker delta function, � the viscosity (constant) and
�ij the rate of strain tensor given by

�ij=(ui; j + uj; i)=2 (4)

Equations (3) and (4) show that both �ij and �ij are symmetric tensors. On substituting
Equation (4) into (3) and the result into Equation (2), one can obtain the well-known Navier–
Stokes equations.
On the �uid surface with outward normal ni, the relationship between the stress and the

traction ti (force per unit area) can be expressed as

ti=�ijnj (5)

Based on these equations, a new and powerful boundary integral equation set can be derived.
To do this, the reciprocal work theorem for the viscous �uid �ow needs to be established.

3. THE RECIPROCAL WORK THEOREM FOR VISCOUS FLUID FLOW

Apart from the set of quantities appearing in the previous section, we consider another set of
velocity, pressure, stress and strain rates which satis�es Equations (1)–(5) and is denoted by
an asterisk. Thus, according to Equation (3), we have

�ij + p�ij =2�(�ij − �ij�kk =3) (6)

�∗
ij + p

∗�ij =2�(�∗ij − �ij�∗kk =3) (7)

Multiplying both sides of Equation (6) by �∗ij and (7) by �ij, it follows that

(�ij + p�ij)�∗ij =2�(�ij�
∗
ij − �∗ii�kk =3) (8)

(�∗
ij + p

∗�ij)�ij =2�(�∗ij�ij − �ii�∗kk =3) (9)

Since �kk = �ii and �∗kk = �
∗
ii , Equations (8) and (9) give

(�ij + p�ij)�∗ij=(�
∗
ij + p

∗�ij)�ij (10)

Consequently, the following integral statement holds true:∫
�
(�ij + p�ij)�∗ij d�=

∫
�
(�∗
ij + p

∗�ij)�ij d� (11)

where � is the domain of the problem.
Equation (11) is the reciprocal work theorem for viscous �ow. It implies that the work

done by the stress set of the �rst system on the strain rates of the second system is equal to
the work done by the stress set of the second system on the strain rates of the �rst system.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:463–484



BOUNDARY-DOMAIN INTEGRAL METHOD FOR VISCOUS FLOW 467

4. INTEGRAL EQUATIONS FOR VISCOUS FLUID FLOWS

4.1. General integral equation

Using relationship (4), the left-hand side of Equation (11) can be integrated by parts as

IL =
∫
�
(�ij + p�ij)�∗ij d�=

∫
�
�iju∗

i; j d� +
∫
�
p�iju∗

i; j d�

=
∫
�
�ijnju∗

i d�−
∫
�
�ij;ju∗

i d� +
∫
�
p�iju∗

i; j d� (12)

where � is the boundary of �.
Similarly, the right-hand side of Equation (11) results in

IR =
∫
�
(�∗
ij + p

∗�ij)�ij d� =
∫
�
�∗
ij njui d�−

∫
�
�∗
ij;jui d� +

∫
�
p∗�ijui; j d� (13)

Integrating the last integral in Equation (13) by parts yields∫
�
p∗�ijui; j d�=

∫
�
p∗�ijnjui d�−

∫
�
p∗
; j�ijui d� (14)

Substituting Equation (14) into (13), it follows that

IR =
∫
�
(�∗
ij + p

∗�ij)njui d�−
∫
�
(�∗
ij + p

∗�ij); jui d� (15)

Let IL = IR and use Equation (5) to yield∫
�
tiu∗

i d�−
∫
�
�ij; ju∗

i d� +
∫
�
p�iju∗

i; j d�=
∫
�
t∗i ui d�−

∫
�
(�∗
ij + p

∗�ij); jui d� (16)

where

t∗i =(�
∗
ij + p

∗�ij)nj (17)

The last integral in Equation (16) can be further reduced by choosing the (*) set to be the
fundamental solutions of the following equations:

(�j∗ik + p
j∗�ik); k + �(y − x)�ij=0 (18)

where �(y− x) is the Dirac delta function of y at point x. The Dirac delta function �(y− x),
sometimes referred to as an impulse function, is used to represent a quantity that has a point
singularity (in�nity at y= x) but is zero everywhere else. A very useful property of the Dirac
delta function is that it can isolate the value of a continuous function f(y) at a speci�c point
x [27]; thus, ∫

�x
f(y)�(y − x) dy=f(x) (19)

where �x is a range of any-size that includes the point x.
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In terms of Equations (3) and (4), Equation (18) can also be written as

�
(
u∗
ij; kk +

1
3 u

∗
kj; ki

)
+ �(y − x)�ij=0 (20)

Now after substituting Equation (18) into the last integral in Equation (16) and account-
ing for Equation (19), replacing u∗

i with the fundamental solution u
∗
ij(x; y) and t

∗
i with the

corresponding term t∗ij(x; y), we obtain

ui(x) =
∫
�
u∗
ij(x; y)tj(y) d�(y)−

∫
�
t∗ij(x; y)uj(y) d�(y)

+
∫
�
u∗
ij;j(x; y)p(y) d�(y)−

∫
�
u∗
ij(x; y)�jk; k(y) d�(y) (21)

Eliminating the term �jk; k in Equation (21) using Equation (2), we can obtain the boundary
integral equations involving the convective term ujui; j which may be treated as the ‘pseudo-
body force’ as done by Bush and Tanner [15] and Power and Mingo [22]. However, this
strategy results in a slow iterative convergence in solving the system of equations. In this
paper, the velocity gradient involved in the convective term is eliminated in the following
way. Using the continuity equation (1), the momentum equation (2) can be written as

�jk; k(y)=
@�(y)uj(y)

@t
− �(y)bj(y) + (�ujuk); k (22)

Substituting this equation into Equation (21), it follows that

ui(x) =
∫
�
u∗
ij(x; y)tj(y) d�(y)−

∫
�
t∗ij(x; y)uj(y) d�(y) +

∫
�
u∗
ij; j(x; y)p(y) d�(y)

+
∫
�
u∗
ij(x; y)�(y)bj(y) d�(y)−

∫
�
u∗
ij(x; y)

@�(y)uj(y)
@t

d�(y)

−
∫
�
u∗
ij(x; y)(�ujuk); k d�(y) (23)

As will be shown, the function u∗
ij(x; y) has a singularity at the point y= x. However, since it

is only a weakly singular integral, the last integral in the above equation can still be integrated
by parts (see Appendix A). Consequently, the following boundary-domain integral equation
can be obtained

ui(x) =
∫
�
u∗
ij(x; y)tj(y) d�(y)−

∫
�
t∗ij(x; y)uj(y) d�(y)

−
∫
�
u∗
ij(x; y)nk(y)�(y)uj(y)uk(y) d�(y)

+
∫
�
u∗
ij; k(x; y)�(y)uj(y)uk(y) d�(y)
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+
∫
�
u∗
ij(x; y)�(y)bj(y) d�(y)−

∫
�
u∗
ij(x; y)

@�(y)uj(x)
@t

d�(y)

+
∫
�
u∗
ij; j(x; y)p(y) d�(y) (24)

Equation (24) is a general boundary integral equation valid for steady, unsteady, compressible
and incompressible �ows. It also holds true for both 2D and 3D problems.

4.2. Fundamental solutions for two-dimensional �ows

In 2D problems, the fundamental solutions of Equation (20) can be derived as

u∗
ij(x; y)=

1
16��

{
7�ij ln

(
1
r

)
+ r;i r;j

}
(25)

where r is the distance between points x and y, and

r;i =
yi − xi
r

(26)

The fundamental solution for traction can be obtained from Equations (17), (7), (25) and a
relationship between �∗ij and u

∗
i similar to Equation (4) as

t∗ij(x; y) =
−1
8�r

{3(nir;j −njr;i ) + (2r;i r;j+3�ij)nkr;k } (27)

Other used quantities can be derived by directly di�erentiating Equation (25) as

u∗
ij; k(x; y) =

−1
16��r

{7�ijr;k −�ikr;j −�jkr;i+2r;i r;j r;k } (28)

u∗
ij; j(x; y) =

−3r;i
8��r

(29)

Equations (25)–(29) show that these fundamental solutions have a singularity at the point
y= x, therefore all integrals in Equation (24) should be interpreted in the Cauchy principal
value sense. From the kernel function t∗ij(x; y) in Equation (27), we can see that the second
integral in Equation (24) is strongly singular when the source point (collocation point) x
approaches the �eld point y. Therefore, Equation (24) is only bounded for internal collocation
points. Fortunately, the rigid body motion strategy can be used to handle this integral for
boundary collocation points. The procedure is exactly the same as in the conventional BEM
[27]. It is not repeated here. Except for the second integral, all other integrals in Equation
(24) are weakly singular and therefore can be evaluated accurately by using the element=cell
sub-division technique [27].
In Equation (24), pressure p appears in the domain integral and therefore one more equation

is needed for this unknown. In addition, the velocity=traction-pressure coupled equation set
may result from Equation (24). In the next section, one more equation will be provided
based on the continuity equation and the pressure will be separated from the velocity=traction
equation set.
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5. INTEGRAL EQUATIONS BASED ON CONTINUITY EQUATION

The continuity equation (1) can be written as

@�
@t
+ ui

@�
@xi

+ �
@ui
@xi
=0 (30)

In order to use this equation, the divergence of velocity needs to be determined. To do this,
di�erentiating Equation (24) with respect to the source point x yields

@ui(x)
@xi

=
∫
�

@u∗
ij(x; y)
@xi

tj(y) d�(y)−
∫
�

@t∗ij(x; y)
@xi

uj(y) d�(y)

−
∫
�

@u∗
ij(x; y)
@xi

nk(y)�(y)uj(y)uk(y) d�(y)

+
∫
�

@u∗
ij; k(x; y)
@xi

�(y)uj(y)uk(y) d�(y)

+
∫
�

@u∗
ij(x; y)
@xi

�(y)bj(y) d�(y)−
∫
�

@u∗
ij(x; y)
@xi

@�(y)uj(y)
@t

d�(y)

+
∫
�

@u∗
ij; j(x; y)
@xi

p(y) d�(y) (31)

All integrals in the above equation need to be evaluated accurately in the Cauchy principal
value sense. However, the direct di�erentiation of kernels makes the singularities one order
higher. Especially, the kernel @u∗

ij; k(x; y)=@xi will become strongly singular. To avoid the direct
di�erentiation, the complex-variable method (CVM) introduced in the BEM by Gao et al. [25]
is adopted to evaluate the derivatives of all kernels appearing in Equation (31). Using CVM,
the order of singularity can be reduced by one. Before doing this, let us �rst evaluate the
domain integral including the pressure p.

5.1. Integration of domain integral involving pressure

The domain integral involving the pressure p in Equation (31) can be analytically integrated.
Cutting a small circular domain �� with radius � centred at point x from domain � (Figure 1)
and noticing that @()=@xi= − @()=@yi= − (); i for solution (25), we have∫
�

@u∗
ij; j(x; y)
@xi

p(y) d�(y) =− lim
�→0

∫
�−��

u∗
ij; ji(x; y)p(y) d�(y)− p(x) lim

�→0

∫
��

@u∗
ij; j(x; y)
@yi

d�(y)

=−
∫
�
u∗
ij; ji(x; y)p(y) d�(y)− p(x) lim

�→0

∫
��
u∗
ij; j(x; y)ni d�(y)

where �� is the boundary of the circular domain ��. By di�erentiating Equation (29), one
can �nd that u∗

ij; ji(x; y)=0. So the �rst integral in the right-hand side of the above equation
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 x
ε 

 
 Ωε

Γε Ω

Γ

Figure 1. A small domain �� cut out from �.

disappears and the second one can be easily integrated as∫
�

@u∗
ij; j(x; y)
@xi

p(y) d�(y)=
3
4�
p(x) (32)

5.2. Evaluation of derivatives of singular kernels using complex-variable method

In CVM, the variable x of a real function f(x) is replaced by a complex one, x + Ih. For a
very small h, f(x + Ih) can be expanded into a Taylor’s series as follows:

f(x + Ih)=f(x) + Ih
df
dx
+ · · ·

Thus, the derivative of the above equation can be expressed as

df
dx
=
Im(f(x + Ih))

h
(33)

where the symbols ‘Im’ denotes the imaginary part. From Equation (33), it can be seen that
the derivative using the complex variable approach only requires function evaluation. This
feature is very attractive particularly when the function is su�ciently complicated. Unlike in
the �nite di�erence method, no cancellation errors exist in CVM. In numerical implementation,
the step-size h is usually set to 10−20, so that the result is step-size independent. CVM can
be easily used to evaluate the derivatives appearing in Equation (31). Let us consider the
co-ordinates at the source point x as complex variables by adding a small imaginary part
Ih to the ith co-ordinate. According to Equation (33) and accounting for Equation (32), if
follows from Equation (31) that

@ui(x)
@xi

=
∫
�
u′
j
∗(x; y)tj(y) d�(y)−

∫
�
t′j

∗(x; y)uj(y) d�(y)

−
∫
�
u′
j
∗(x; y)nk(y)�(y)uj(y)uk(y) d�(y)

+
∫
�
u′
j; k
∗(x; y)�(y)uj(y)uk(y) d�(y)
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+
∫
�
u′
j
∗(x; y)�(y)bj(y) d�(y)−

∫
�
u′
j
∗(x; y)

@�uj
@t

d�(y)

+
3
4�
p(x) (34)

where

u′∗
j (x; y) =

1
h
Im(u∗

ij(xi + Ih; y))

t′∗j (x; y) =
1
h
Im(t∗ij(xi + Ih; y))

u′∗
j; k(x; y) =

1
h
Im(u∗

ij; k(xi + Ih; y))

(35)

Comparison of Equation (34) with Equation (24) reveals that the singularities involved in
the expression of divergence of the velocity are the same as occurred in the velocity integral
equation (24) and are only weakly singular. Therefore, every integral in Equation (34) can be
evaluated accurately for internal points. For boundary points, the kernel t∗ij is still singular even
using CVM, so the traction-recovery method is used in this paper. The implement procedure
of the traction-recovery method is similar to the computation of the boundary stresses in the
convention BEM. Readers may refer to Reference [27] for details.
Substituting Equation (34) into (30), we can obtain the desired integral equation to close the

equation set provided by Equations (24) for problems with velocities=tractions and pressures as
unknowns. Using Equations (34) and (30), the pressure can be expressed in terms of velocities
and tractions. Therefore, the �nal system of equations only includes velocities=tractions as
unknowns. For compressive �ows, the density � is also unknown. In this case, the energy
equation and equation of state are required to close the �nal system of equations and the
unknowns will be velocity=traction, density and temperature. This will be described in a
future work.

6. NUMERICAL IMPLEMENTATION FOR STEADY INCOMPRESSIBLE FLOWS

In this section, the detailed numerical implementation of Equations (24) and (34) in steady
incompressible �ows is described. In this case, the density � is constant and the time-related
domain integrals in Equations (24) and (34) disappear. Thus, the continuity equation (30)
becomes

@ui
@xi
=0 (36)

6.1. Algebraic system of equations
Numerical implementation of Equations (24) and (34) requires discretization of the boundary
� into boundary elements and the domain � into internal cells. For each boundary element
or internal cell, the velocity, traction and pressure can be expressed in terms of their nodal
values through shape functions as follows:

uj =
∑
�
N�u�j (37)
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tj =
∑
�
N�t�j (38)

p=
∑
�
N�p� (39)

where N� are shape functions for boundary elements and internal cells [27], u�j represents the
value of uj at node �. Usually, the non-linear term ujuk is formed by Equation (37). However,
for the sake of simplicity to assemble, the following linearized formulation is used:

ujuk =
∑
�
N�u�j u

�
k (40)

This approximation enables us to assemble the coe�cient matrices node by node.
Substituting Equations (37)–(40) into the discretized form of the integral equation (24) and

collocating x for all boundary nodes (rigid body motion is used for determination of diagonal
terms) yields the following algebraic matrix equation:

[H ]{u}=[G]{t}+ {b}+ [Cb]{p}+ [Db]{u2} (41)

where {u} and {t} are vectors consisting of velocities and tractions at all boundary nodes,
respectively, and {b} is constant vector from body forces. And {p} and {u2} are vectors
consisting of pressure and velocity products at all nodes (i.e. boundary and internal nodes).
The latter can be clearly shown as

{u2}= {(u11)2; u11u12; (u12)2; (u21)2; u21u22; (u22)2; : : : ; (un1)2; un1un2; (un2)2}T (42)

in which n is the total number of all nodes.
In each direction of a boundary node, either velocity or traction is speci�ed as a boundary

condition. So after applying the boundary conditions to Equation (41) and rearrange the
equation, it follows that

[Ab]{X }= {Yb}+ [Cb]{p}+ [Db]{u2} (43)

where {X } is a vector consisting of unknown velocities and unknown tractions, and {Yb} is
a known vector. Similarly, for internal nodes, Equation (24) gives

{uI}=[AI ]{X }+ {YI}+ [CI ]{p}+ [DI ]{u2} (44)

where {uI} is the vector consisting of all velocities at internal nodes. Finally, substituting
Equation (34) into (36) yields

{p}=[Ap]{X }+ {Yp}+ [Dp]{u2} (45)

Since for boundary nodes, the traction-recovery method [27] can also result in an equation
similar to Equation (45), we assume that Equation (45) represents the equations for both
boundary and internal nodes.
Now substituting Equation (45) into (43), we can obtain

{X }= {Y x}+ [Dx]{u2} (46)
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where

{Y x}= [A]−1({Yb}+ [Cb]{Yp})
{Dx}= [A]−1([Db] + [Cb][Dp])

(47)

here

[A]= [Ab]− [Cb][Ap] (48)

Then substituting Equation (46) into (45) yields

{p}= {Yp}+ [Dp]{u2} (49)

where

{Yp}= {Yp}+ [Ap]{Y x}
[Dp] = [Dp] + [Ap][Dx]

(50)

Finally, substituting Equations (46) and (49) into (44), we obtain the matrix equations for
internal velocities

{uI}= {Y I}+ [DI ]{u2} (51)

where

{Y I}= {YI}+ [AI ]{Y x}+ [CI ]{Yp}
[DI ] = [DI ] + [AI ][Dx] + [CI ][Dp]

(52)

Equations (46), (49) and (51) constitute the �nal system of equations with {X } and {uI}
as unknowns. Since they are non-linear equations about velocities, an iterative procedure is
required to solve them. Among the three equations, only Equations (46) and (51) are used
in the iterative process. Once the iteration converges, the values of velocities are plugged in
Equation (49) to compute the pressures. The advantage of the equation set presented above
over the existing “pseudo-body force” representations is that the velocities explicitly appear
in the system of equations. Therefore, the �rst and second derivatives of the system with
respect to velocities can be easily derived so that any advanced non-linear equation solver
can be applied to solve the system of equations. In the following section, the Newton–Raphson
scheme is described in detail.

6.2. Solving system of equations using the Newton–Raphson scheme

The notation {X }i and {uI}i is used to denote the boundary unknowns and internal velocities,
respectively, after the ith iteration. The residuals of Equations (46) and (51), following the
ith iteration, can be written as

{Rx}i = {Y x}i + [Dx]{u2}i − {X }i
{RI}i = {Y I}i + [DI ]{u2}i − {uI}i

(53)
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Our objective is to reduce the residual to zero. If we force {Rx}i+1 and {RI}i+1 to be zero,
we obtain

0 = {Rx}i+1 = {Rx}i + @{R
x}i

@{X }i {�X }+ @{R
x}i

@{uI}i {�uI} (54)

0 = {RI}i+1 = {RI}i + @{R
I}i

@{X }i {�X }+ @{R
I}i

@{uI}i {�uI} (55)

where {�X } and {�uI} are the changes in the boundary unknowns and internal velocities.
Combining Equations (54) and (55) yields



@{Rx}i
@{X }i

@{Rx}i
@{uI}i

@{RI}i
@{X }i

@{RI}i
@{uI}i




{{�X }
{�uI}

}
= −

{{Rx}i
{RI}i

}
(56)

where

@{Rx}i
@{X }i = [D

x][UX ]− [I ]

@{Rx}i
@{uI}i = [D

x][UI ]

@{RI}i
@{X }i = [D

I ][UX ]

@{RI}i
@{uI}i = [D

I ][UI ]− [I ]

(57)

in which, [I ] is the identity matrix, and [UX ] and [UI ] are formed by the derivatives of {u2}
with respect to boundary unknown velocities and internal velocities, respectively, i.e.

[UX ] =




[U ′
x
1] 0 · · · 0

0 [U ′
x
2] · · · 0

...
...

...

0 0 · · · [U ′
x
nb ]

0 0 · · · 0

...
...

...

0 0 · · · 0




(58)
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[UI ] =




0 0 · · · 0

...
...

...

[U ′
I
nb+1] 0 · · · 0

0 [U ′
I
nb+2] · · · 0

...
...

...

0 0 · · · [U ′
I
n]




(59)

where nb and n are the numbers of boundary nodes and total nodes, respectively, and for
node k

[U ′
x
k] =



2uk1�1 0

uk2�1 uk1�2

0 2uk2�2


 (60)

[U ′
I
k] =



2uk1 0

uk2 uk1

0 2uk2


 (61)

In Equation (60), �1 = 0 if the velocity is speci�ed in the x-direction at node k, otherwise
�1 = 1. The same rule is applied to �2, but for the y-direction.
Solving Equation (56) for {�X } and {�uI}, the values of unknowns are updated using

the equations

{X }i+1 = {X }i + {�X }
{uI}i+1 = {uI}i + {�uI}

(62)

With these new values, we go back to Equation (53) to do the next iteration. Once convergence
is achieved, that is, the norm of {Rx}i and {RI}i is less than a speci�ed tolerance, the pressure
can be computed using Equation (45).
It is noted that in the iteration, only matrices [U ′

x
k] and [U ′

I
k] need to be recomputed. Other

matrices are formed only once and can be stored on a disk for subsequent iteration use.

7. NUMERICAL EXAMPLES

Two numerical examples of two-dimensional steady incompressible viscous �ows are pre-
sented in this section to demonstrate the correctness of the results derived in this paper. The
�rst one is the well-known Couette �ow which has analytical solutions to verify and the sec-
ond one is the driven cavity �ow for which the benchmark solution is available [28]. These
two examples were computed on a PC computer (2 GHz, 256 Mb RAM).
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x

y

p=0p=50
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11=µ

Figure 2. Geometry and boundary condition for Couette �ow.

Table I. Horizontal velocities along y-direction.

y 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Current 0.54609 0.9363 1.17033 1.2484 1.170331 0.9362 0.546081
Exact 0.54687 0.9375 1.17187 1.25 1.171875 0.9375 0.546875

7.1. Couette �ow

In order to validate the formulations derived in this paper, the simplest Couette �ow is
considered �rst. The �ow is two dimensional, between two �at plates without body forces
(Figure 2).
The ‘no-slip’ condition is applied to the upper and lower sides. Mathematically, the bound-

ary conditions can be expressed as

tx=p=50

uy=0
on side x = 0

tx=p=0

uy=0
on side x = 5

ux=0

uy=0
on sides y = 0 and y = 1

For this simple problem, analytical solutions are available [29]. The horizontal velocity can
be expressed as

ux= − p′

2�
y(H − y)

where H =1 is the distance between upper and lower sides, p′=dp=dx=10 is the gradient
of pressure.
For the BEM model, both upper and lower sides are discretized into 40 equally spaced linear

boundary elements and left and right sides into 18 elements. Totally, there are 112 boundary
elements and 112 boundary nodes. The domain is discretized into 640 equally sized internal
cells with 585 internal nodes. Table I lists the computed horizontal velocities and analytical
solutions along y-direction at x=2:5. Figure 3 is a plot of the velocity pro�le. Although
this problem is density independent, in order to examine the convergence of iteration, the
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Figure 3. Velocity pro�le on vertical lines.
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Figure 4. Iteration history for Couette �ow.

computation is carried out by setting the density � to 1. Figure 4 shows the convergence
history of iteration for a convergence tolerance of 10−8. The computational time spent for
this example is 45 s.
From Figure 3, we can see that the results from the current method are in good agreement

with the exact solutions and Figure 4 shows that very rapid convergence can be achieved for
this simple example.

7.2. Driven �ow in a unitary square cavity

The second numerical example concerned is a unitary square cavity (Figure 5). The top wall
moves with a uniform velocity of 1 in the horizontal direction, while the other walls are �xed
including two corners of the top side. Ghia et al. [28] presented a benchmark solution that
is commonly cited for comparison purposes (e.g. Reference [16]). Each wall is discretized
into 80 equally spaced linear boundary elements with a total of 160 elements and 160 nodes
around the cavity. The domain of the cavity is approximated with 1600 linear quadrilateral
cells with 1521 internal nodes.
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Figure 5. Geometry and boundary conditions for driven cavity �ow.
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Figure 6. Horizontal velocity pro�le on vertical centre line of the driven cavity.

The Reynolds number is de�ned as Re=�UH=�, where U is the characteristic velocity and
H the characteristic length. In this example, the parameters are set as �=100, U =1, H =1,
and �=1. This implies that Re=100. Figure 6 shows the computed horizontal velocities
on vertical centre line of the cavity and Figure 7 depicts the vertical velocity pro�le on
the horizontal centre line. The traction distribution over the top of the cavity is plotted in
Figure 8. The traction singularity at corners of the cavity can be clearly revealed in Figure 8.
In order to have a global sight of the �ow in the cavity, Figure 9 gives the velocity vector
plot. The computed vortex centre location is (0.6153, 0.7354), which is close to the result
(0.6172, 0.7344) by Ghia et al. [28]. The iteration history is shown in Figure 10 for the
given convergence tolerance of 10−10. The convergence is achieved after 29 iterations. The
computational time spent for this example is 17 min.
Comparison of the current results with the benchmark solutions in Figures 6 and 7 indicates

that the method described in this paper is correct and the iteration history in Figure 10 shows
that fast convergence can be achieved using the current method.
In this example, the computational results are given only for the case of Reynolds num-

ber Re=100. More computations with higher Reynolds numbers were also conducted using
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Figure 9. Velocity vectors.

the same computational model. Good convergence can only be achieved for Reynolds num-
ber Re6220. This may be the limit of using the basic Newton–Raphson iteration scheme.
For higher Reynolds number cases, an advanced non-linear equation solver [30–32] may be
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necessary or �ner boundary elements and internal cells may be required. However, this has
exceeded our currently available resources.

8. CONCLUDING REMARKS

A new boundary-domain integral equation method is presented for viscous �uid �ow problems,
for which a complete set of fundamental solutions is given for two-dimensional problems. The
derived formulation is general and promising, applicable to steady, unsteady, compressible and
incompressible �ows. Two numerical results for steady incompressible �ows demonstrated the
correctness of the method.
Although the pressure is included in the basic integral equation (Equation (24)), decoupled

system of equations can be achieved by using the continuity equation to eliminate the pressure
term. This is a bene�cial feature of the BEM as compared to other numerical methods for
solving viscous �ow problems. This feature enables us to reduce unknowns by one for each
node to save computer memory and computational time.
Owing to the use of the complex-variable technique to compute the divergence of velocity,

no strongly singular domain integrals need to be treated particularly and therefore accurate
results can be obtained.
The distinct advantage of the presented formulation is that velocities explicitly appear in the

system of equations (without including velocity gradients). Therefore, the existing powerful
non-linear system solvers can be easily employed to solve the system of equations.
In this paper, only the basic Newton–Raphson scheme is described in solving the non-linear

system. Acceleration technique, such as the relaxation technique [16, 30] can be applied to
improve the convergence speed and stability of the Newton–Raphson scheme. Alternatively,
one can also use advanced non-linear solvers, such as the modi�ed Powell hybrid algorithm
with Jacobian [31]. To save storage, the use of the variable metric method in multi-dimensions
is e�ective [32]. Using this method, the derivative (Jacobian) matrix needs not to be inverted
directly.
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APPENDIX A

To treat the last integral in Equation (23), we divide the integral domain � into two parts,
� − �� and ��, with �� being an in�nitesimal circular range with radius � and centred at
point x (see Figure 1). Thus,∫

�
u∗
ij(x; y)(�ujuk); k d�(y) = lim�→0

∫
�−��

u∗
ij(x; y)(�ujuk); k d�(y)

+ lim
�→0

∫
��
u∗
ij(x; y)(�ujuk); k d�(y) (A1)

where the fundamental solution u∗
ij is determined by Equation (25).

Let us consider a polar co-ordinate system (r; 	) with the origin at the centre of the circle
��. In this system, the quantity r; i is a function of 	 only (see Equation (26)). Assuming that
the velocity is continuous, the last integral in Equation (A1) can be operated as

lim
�→0

∫
��
u∗
ij(x; y)(�ujuk); k d�(y) = (�ujuk); k |y=x lim�→0

∫ 2�

0

∫ �

0
u∗
ij(x; y)r dr d	

= (�ujuk); k |y=x 1
64��

∫ 2�

0

(
lim
�→0

�2[7(1− 2 ln �)�ij + 2r; ir; j]
)
d	

= (�ujuk); k |y=x 1
64��

∫ 2�

0
0 d	=0 (A2)

The �rst integral on the right-hand side of Equation (A1) is regular since the point x is located
outside the domain �− �� which is bounded by boundaries � and ��. Thus, integrating this
integral by parts yields

lim
�→0

∫
�−��

u∗
ij(x; y)(�ujuk); k d�(y) =

∫
�
u∗
ij(x; y)nk(y)�(y)uj(y)uk(y) d�(y)

+ lim
�→0

∫
��
u∗
ij(x; y)nk(y)�(y)uj(y)uk(y) d�(y)

− lim
�→0

∫
�−��

u∗
ij; k(x; y)�(y)uj(y)uk(y) d�(y)

=
∫
�
u∗
ij(x; y)nk(y)�(y)uj(y)uk(y) d�(y)

−
∫
�
u∗
ij; k(x; y)�(y)uj(y)uk(y) d�(y)

+�(x)uj(x)uk(x)lim
�→0

∫
��
u∗
ij(x; y)nk(y) d�(y) (A3)
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Since the boundary �� is a circle and the outward normal nk in the last integral of Equation
(A3) is directed inward, it follows that nk = − r; k . Thus, noticing that r= � and r; k is a function
of 	 only, we have

lim
�→0

∫
��
u∗
ij(x; y)nk d�(y) =−lim

�→0

∫ 2�

0
u∗
ij(x; y)r; kr d	

=−
∫ 2�

0

[
lim
�→0

�u∗
ij(x; y)

]
r; k d	 (A4)

From Equation (25) we can see that the function u∗
ij(x; y) is a weakly singular function, so

that

lim
�→0

�u∗
ij(x; y)=0 (A5)

Finally, combining Equations (A1)–(A5), we obtain∫
�
u∗
ij(x; y)(�ujuk); k d�(y) =

∫
�
u∗
ij(x; y)nk(y)�(y)uj(y)uk(y) d�(y)

−
∫
�
u∗
ij; k(x; y)�(y)uj(y)uk(y) d�(y) (A6)

REFERENCES

1. Bourchtein A. Exact solutions of the generalized Navier–Stokes equations for benchmarking. International
Journal for Numerical Methods in Fluids 2002; 39:1053–1071.

2. Roache PJ. Computational Fluid Dynamics (revised edn). Hermosa Press: Albuquerque, 1976.
3. Patankar SV. Numerical Heat Transfer and Fluid Flow. McGraw-Hill: New York, 1980.
4. Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press: Boca
Raton, FL, 1987.

5. Gao XW, Chen PC, Tang L. Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary
element method. AIAA Journal 2002; 40:1512–1517.

6. Eguchi Y. A new positive-de�nite regularization of incompressible Navier–Stokes equations discretized with
Q1=P0 �nite element. International Journal for Numerical Methods in Fluids 2003; 41:881–904.

7. Nardini D, Brebbia CA. A new approach for free vibration analysis using boundary elements. In Boundary
Element Methods in Engineering, Brebbia CA (ed.). Springer: Berlin, 1982; 312–326.

8. Gao XW. The radial integration method for evaluation of domain integrals with boundary-only discretization.
Engineering Analysis with Boundary Elements 2002; 26:905–916.

9. Wu JC, Thompson JF. Numerical solutions of time-dependent incompressible Navier–Stokes equations using an
integral-di�erential formulation. Computers in Fluids 1973; 1:197–215.

10. Skerget P, Alujevic A, Brebbia CA. The solution of Navier–Stokes equations in terms of vorticity-velocity
variables by boundary elements. In BEM VI. Computational Mechanics Publications: Southampton, 1984.

11. Onishi K, Kuroki T, Tanaka M. An application of the boundary element method to incompressible laminar
viscous �ow. Engineering Analysis 1984; 1:122–127.

12. Kitagawa K, Brebbia CA, Wrobel LC, Tanaka M. Boundary element analysis of viscous �ow by penalty function
formulation. Engineering Analysis 1986; 3:194–200.

13. Grigoriev MM, Fafurin AV. A boundary element method for steady viscous �uid �ow using penalty function
formulation. International Journal for Numerical Methods in Fluids 1997; 25:907–929.

14. Ladyzhenskaya OA. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach:
New York, 1963.

15. Bush MB, Tanner RI. Numerical solution of viscous �ows using integral equation method. International Journal
for Numerical Methods in Fluids 1983; 3:71–92.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:463–484



484 X.-W. GAO

16. Aydin M, Fenner RT. Boundary element analysis of driven cavity �ow for low and moderate Reynolds numbers.
International Journal for Numerical Methods in Fluids 2001; 37:45–64.

17. Tosaka N, Onishi K. Boundary integral equations formulations for steady Navier–Stokes equations using the
Stokes fundamental solution. Engineering Analysis with BEM 1985; 2:128–132.

18. Tosaka N, Fukushima N. Integral equation analysis of laminar natural convection problems. In BEM VIII.
Computational Mechanics Publications: Southampton, Springer: Berlin, 1986.

19. Dargush GF, Banerjee PK. A boundary element method for steady incompressible thermoviscous �ow.
International Journal for Numerical Methods in Engineering 1991; 31:1605–1626.

20. Power H, Partridge PW. The use of Stokes’ fundamental solution for the boundary only formulation of the three-
dimensional Navier–Stokes equations for moderate Reynolds numbers. International Journal for Numerical
Methods in Engineering 1994; 37:1825–1840.

21. Sarler B, Kuhn G. Primitive variable dual reciprocity boundary element method solution of incompressible
Navier–Stokes equations. Engineering Analysis with Boundary Elements 1999; 23:443–455.

22. Power H, Mingo R. The DRM subdomain decomposition approach to solve the two-dimensional Navier–Stokes
system of equations. Engineering Analysis with Boundary Elements 2000; 24:107–119.

23. Florez WF, Power H, Chejne F. Multi-domain dual reciprocity BEM approach for the Navier–Stokes system of
equations. Communications in Numerical Methods in Engineering 2000; 16:671–681.

24. Liu DD, Chen PC, Tang L, Chang KT, Gao XW. Expedient hypersonic aerothermodynamics methodology for
RLV=TPS design. In Proceedings of AIAA=AAAF 11th International Space Planes and Hypersonic Systems
and Technologies Conference, Orleans, France, 29 September–4 October 2002; 1–9.

25. Gao XW, Liu DD, Chen PC. Internal stresses in inelastic BEM using complex-variable di�erentiation.
Computational Mechanics 2002; 28:40–46.

26. White FM. Viscous Fluid Flow (2nd edn). McGraw-Hill: Boston, 1991.
27. Gao XW, Davies TG. Boundary Element Programming in Mechanics. Cambridge University Press: Cambridge,

MA, 2002.
28. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible �ow using the Navier–Stokes equations and

a multigrid method. Journal of Computational Physics 1982; 48:387–411.
29. Granger RA. Fluid Mechanics. Dover: New York, 1995.
30. Florez WF. Nonlinear Flow Using Dual Reciprocity. WIT Press: Southampton, 2001.
31. More JB, Hillstrom K. User guide for MINPACK-1. Argonne National Labs Report ANL80-74, Argonne, IL,

1980.
32. Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes: The Art of Scienti�c Computing.

Cambridge University Press: Cambridge, MA, 1986; 307–312.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:463–484


